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a b s t r a c t

It is shown, using the example of an investigation of the stability of relative equilibrium positions (libra-
tion points) in the classical three-body problem and in several modifications of it, that in many cases
it, is simpler and more informative to construct the stability region of equilibrium positions in the
configuration space of the system rather than in the parameter space.

© 2010 Elsevier Ltd. All rights reserved.

The problem of the stability of steady motions can be reduced to the solution of a system of n equations in n generalized coordinates
and parameters of the system. The conventional procedure consists of solving the system for the generalized coordinates, substituting
the solution into inequalities that express the stability conditions and constructing the stability region in parameter space. However, this
system is generally non-linear and difficult to solve analytically for the generalized coordinates. Nevertheless, certain parameters often
exhibit linear behaviour in the equations, and representing them in the form of functions of the generalized coordinates is an easily solvable
problem. After some of the parameters are eliminated, the stability region can be constructed in configuration space or in a mixed space
of parameters and generalized coordinates rather than in parameter space. This sometimes produces an informative and physically clear
picture of the stability region.

Such an approach is effective for constructing the stability regions of relative equilibrium positions (libration points) in the classical
three-body problem and several of its modifications.

Consider the constant Lagrangians of the solution of the unrestricted three-body problem in a generalized Laplace formulation, in which
the bodies are located at the vertices of an equilateral triangle. The conditions for orbital stability of these solutions are known in a first
approximation (the necessary conditions for Routh–Zhukovskii stability1,2)

(1)

where m1, m2 and m3 are the masses of the bodies and � is the exponent in the power law for mutual gravitation (for Newtonian gravitation
� = −2). A physically informative picture of the stability region can be obtained in configuration space if we consider the positions of the
centre of mass of the bodies instead of the values of the masses of the three points. Let r be the radius vector of the centre of mass drawn from
the geometric centre of an equilateral triangle whose vertices are occupied by the bodies. The first of the inequalities in (1) is equivalent
to the inequality (� is a side of the triangle)3

(2)

When the right-hand side is positive, inequality (2) indicates that the centre of mass of the system must be located outside the circle of
radius rc with its centre at the geometric centre of the equilateral triangle formed by the point masses (Fig. 1).

We will trace the evolution of the stability region as the parameter � varies. As can be seen from relation (2), as � varies from −3 to −1,
the radius rc of the boundary of the stability region decreases from rc = rmax = �/

√
3 to 0, and the stability region expands. When � = −3

and rc = rmax, the stability region vanishes, because rmax is equal to the radius of the circle circumscribed about the triangle, outside of
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Fig. 1.

which the centre of mass of the system cannot be located. When � = −1, the circle contracts to a point. When � > −1, the right-hand side
of inequality (2) becomes negative, and the stability conditions hold for any mass. In the case of Newtonian gravitation (� = −2), which
is of practical interest, the ratio rc/rmax = ∼ 0.94, and the boundary of the region where the necessary conditions for stability hold closely
approaches the vertices of the triangle. This leads to the well-known conclusion that stability is possible in this case only when one of the
masses is large compared with the other two.

The question of stability by virtue of the complete equations of perturbed motion remained open for a long time, and it was established
only comparatively recently4,5 that in the region where the necessary conditions for stability hold, there are two resonance sets of mass
values (that correspond to third- and fourth-order internal resonance conditions), under which the Lagrangians of the solutions are unstable
by virtue of the complete (non-linear) equations of perturbed motion. These sets correspond to two sets of positions of the centres of mass
of the system in the form of two concentric circles with the same centre O that intersect the stability regions shown in Fig. 1. In the
remaining cases where the necessary conditions for stability (1) hold, the question of stability by virtue of the non-linear system has not
been solved.

We now consider the restricted circular three-body problem, for which the transition to configuration space enables us to give a simple
proof for the existence of three and only three collinear libration points. As we know,6 these points are unstable; however, because they
are highly attractive for dealing with circumlunar space, various methods for stabilizing them have been developed, one of which7 will be
discussed below.

The conventional approach6 to determining the coordinates of collinear libration points involves transforming the non-linear equilib-
rium equation (x1 and x2 are the coordinates of points with masses 1 − � and �, and the distance between these masses is taken as the
unit of length)

which specifies the coordinates of the collinear libration points, into a fifth-order algebraic equation in x. The coefficients in this equation
depend non-linearly on the mass parameter �, and the proof that it has three real roots, which are the coordinates of collinear libration
points, is not trivial.

However, if the origin of coordinates of the system is placed not at the centre of mass of the system, but at some fixed point (independent
of �) on the straight line passing through the principal bodies, for example, at a point with mass 1 − �, the equilibrium equation indicated
becomes linear in the parameter �:

A graph of the function �(x) is shown in Fig. 2 for the entire physically possible range of variation of the mass parameter � (0 < � < 1).
The conclusion that there are three collinear points for any fixed � becomes clear from this figure. The figure also reveals the nature of the
relative positioning of the collinear libration points as � varies.

We will now consider several modified versions of the restricted circular three-body problem. In the first of these, which is called
the photogravitational three-body problem,8 the motion of a microparticle in a repulsive gravitational field of binary star systems, which
comprise a significant part of all star systems, is considered. Thus, it will be assumed that a passively gravitating particle will experience
radiation pressure forces from the principal bodies S1 and S2 in addition to the gravitational forces. In this case, in the orbital planes of
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the principal bodies (the stars) there are three-parameter families of relative equilibrium positions of the microparticles.9,10 All three
parameters (the mass parameter �, which is equal to the relative mass of one of the stars, and the reduction coefficients of the particles Q1
and Q2, which represent the ratios of the difference between the gravitational force and the radiation pressure force to the gravitational
force) appear as linear parameters in the equations that specify the relative equilibrium positions of the particle. Solving these equations
for Q1 and Q2, we obtain Qi = r3

i
(Refs 9 and 10), where ri denotes the distances from the particle to each of the bodies S1 and S2 (the

distance between the bodies is taken as the unit of length). It follows from the physical meaning of the reduction coefficients that Qi ≤ 1,
i.e., the region where the libration points exist is bounded by two circles of unit radius with centres at S1 and S2, which intersect at the
classical libration points L4 and L5 (Fig. 3).

For any fixed stellar pair (S1, S2), the reduction coefficients are constrained by the condition9,10 (1 − Q2)/(1 − Q1) = k, where k is a
parameter that characterizes the repulsive gravitational field of the stellar pair (c1 and c2 are the optical radiation powers of the stars)

The reduction coefficients Q1 and Q2 also depend on the properties of the particles; therefore, in the planes of the orbits of the stellar
pair there are curves (cloud clusters) that are specified by the equation

Fig. 3.
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and consist of relative equilibrium positions of particles with different reduction coefficients. These curves are shown in Fig. 3 for k = 1 and
k > 1.

The necessary conditions for stability of the libration points found9,10 are obtained from the requirement that the characteristic equation
of the linearized system of equations of the perturbed motion does not have any roots with positive real parts. After eliminating the
parameters Q1 and Q2 using the formulae indicated above, which can be obtained from the equilibrium positions, these necessary conditions
take the form

where �1 and �2 are the angles made with the Ox axis by the radius vectors r1 and r2 of the particle, which are drawn from the points S1
and S2 and will hold for all libration points if � does not exceed the smaller root of the equation

At large values of �, the stability region allows of the following simple geometrical interpretation in the configuration space of the
system (i.e., in the system of coordinates Oxy with origin at the centre of mass).9,10 It consists of three parts (they are shown hatched in
Fig. 3), whose boundaries are arcs of two circles with an identical radius that depends on �. The circles have the segment S1S2 as a common
chord (their centres lie on the segment L4L5 on opposite sides of this chord at the same distance from it). One of these parts of the stability
region contains the entire segment S1S2 and is symmetrical about it. The other two parts (which are also symmetrical about the Ox axis)
are adjacent to the classical triangular libration points L4 and L5 and are bounded on the right and on the left by circles of unit radius. The
stability region, whose shape and dimensions are specified only by the parameter �, is intersected by curves that correspond to different
values of the parameter k and represent families of microparticles with different area/mass ratios.

One more modification of the restricted three-body problem, in which a small reactive acceleration w (which is constant in absolute
value and has an invariant orientation in the system of coordinates Oxyz rotating about the Oz axis) was imparted to a passively gravitating
point for the purpose of stabilizing the positions of the collinear libration points, which, as we know, are unstable in the classical problem,
was considered in Ref 7.

Under the assumptions made, the force field of the problem is still a potential field with the force function

where W(x, y, z) is the force function of the classical problem and r is the radius vector of the passively gravitating point, drawn from the
centre of mass of the system, at which the origin of the rectangular system of coordinates Oxyz with the Ox axis directed along the straight
line connecting the principal bodies is placed.

From the conditions for relative equilibrium of the passively gravitating point in the Oxy plane

where � is the angle the reactive acceleration vector makes with the Ox axis, we can easily determine the absolute value of the acceleration
and the angle �

(3)

while finding the coordinates of the equilibrium positions as functions of w and � is an analytically unsolvable problem.
It is seen from expression (3) that any point in the Oxy plane can be made a relative equilibrium position by selecting the appropriate

value for the acceleration. The question of which of these positions will be stable is solved by investigating the equations of perturbed
motion, which contain the second partial derivatives of the force function U. A characteristic feature of the problem under consideration
is the fact that these derivatives do not contain the acceleration w and are identical to the second partial derivatives of the force function
W of the classical problem. Therefore, when constructing the stability region, it does not matter whether the additional acceleration acts
on the point or not. Only equilibrium conditions (3) should be used to select its magnitude so that it fall’s within the stability region found,
which is thus the invariant region of the classical restricted three-body problem.

The inequalities obtained enable us to construct a region of gyroscopic stability in the configuration space of the system, and they
contain the parameter �, which is the dimensionless mass of the small body. Because of the fairly complex dependence of the inequalities
obtained on the coordinates x and y, the boundaries of the stability region specified by them can only be found numerically. Corresponding
calculations for the Earth–Moon system were previously performed.7 They showed that stability regions exist and occupy a part of the
Oxy plane located near the outer collinear libration point L3 of the system. Although these stability conditions were obtained in a first
approximation, it may asserted,11 by virtue of the Hamiltonian nature of the system, that stability is maintained when terms up to any
finite high order are taken into account in the equations of perturbed motion.

Acknowledgements

I wish to thank S. Ya. Stepanov for discussing the results.
This research was financed by the Russian Foundation for Basic Research (06-01-000-68 and 09-01-00-468) and the Programme for the

Development of the Scientific Potential of Higher Schools.



A.L. Kunitsyn / Journal of Applied Mathematics and Mechanics 73 (2009) 637–641 641

References

1. Routh E. On Laplace’s three particles, with supplement on the stability of a steady motion. Proc London Math Soc 1875;6:86–97.
2. Zhukovskii NYe. Collected Papers. Vol 1: On the Stability of Motion. Moscow, Leningrad: Gostekhizdat; 1937. pp. 110–218.
3. Kunitsyn AL. A geometrical interpretation of the necessary conditions for stability of the triangular libration points of the general three-body problem. Celest Mech

1971;3(2):222–6.
4. Kunitsyn AL, Tkhai VN. On the instability of Laplace’s solutions of the unrestricted three-body problem. Pis’ma Astron Zh 1977;3(8):376–80.
5. Ivanov AP. Investigation of the stability of the constants of the Lagrange solutions of the plane unrestricted three-body problem. Prikl Mat Mekh 1979;43(5):787–95.
6. Duboshin GN. Celestial Mechanics. Fundamental Problem and Methods. Moscow: Nauka; 1968.
7. Dzhumabayeva AA, Kunitsyn AL, Tuyakbayev A. On the stabilization of collinear libration points in the Earth–Moon system. Prikl Mat Mekh 1999;63(2):196–203.
8. Radziyevskii VV. The restricted three-body problem with allowance for the radiation pressure. Astron Zh 1950;27(4):249–56.
9. Kunitsyn AL, Chudayeva AM. On the stability of clusters of microparticles in a repulsive gravitational field of binary star systems. Prikl Mat Mekh 2003;67(5):731–8.

10. Kunitsyn AL, Tureshbayev AT. The stability of triangular libration points of the photogravitational three-body problem. Pis’ma Astron Zh 1985;11(2):145–8.
11. Birkhoff GD. Dynamical Systems. New York: American Mathematical Society; 1927.

Translated by P.S.


	Construction of stability regions in the three-body problem using parameter elimination
	Acknowledgements
	References


